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Intermingled neural connections apparent in the brain make us wonder what controls the traffic of propa-
gating activity in the brain to secure signal transmission without harmful crosstalk. Here, we reveal that
inhibitory input but not excitatory input works as a particularly useful traffic controller because it controls the
degree of synchrony of population firing of neurons as well as controlling the size of the population firing
bidirectionally. Our dynamical system analysis reveals that the synchrony enhancement depends crucially on
the nonlinear membrane potential dynamics and a hidden slow dynamical variable. Our electrophysiological
study with rodent slice preparations show that the phenomenon happens in real neurons. Furthermore, our
analysis with the Fokker-Planck equations demonstrates the phenomenon in a semianalytical manner.
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I. INTRODUCTION

Inhibitory input to network of neurons or more generally
excitable media can modulate their activity in a way more
complex than the simple activity suppression. For instance,
inhibitory input delivered to a physiologically modeled neu-
ron but not the leaky integrate-and-fire �LIF� neuron, can
paradoxically increase the firing probability if it is delivered
at a right timing �1–3�. For a population of neurons, this
increase in firing probability of a single neuron is interpreted
as an increase in the number of firing neurons in a population
due to inhibitory input �4�. Here, we demonstrate a mecha-
nism by which inhibitory input also enhance the synchrony
of population firing. We carefully study this synchrony en-
hancement, that was actually visible in our previous study
�4� but out of focus there. We indicate that a nonlinear
mechanism is responsible for this synchrony enhancement.
The synchrony enhancement by inhibitory input shows a
clear contrast to the previously studied synchronization of
neurons in mutually connected neural networks �5�, which
was observed even for a linear neuron model.

For the best illustration of the synchrony enhancement in
the feedforward setting, we take the so-called the synfire
chain as an example �4,6–24� which is stable propagation of
population firing of neurons. Let us consider the population
firing that is described with a bell-shaped pulse packet �Fig.
1�a�� which indicates the number of firing neurons versus
time �9�. The pulse packet is specified with the number of
total firing, a, the degree of synchrony measured with the
width, �, and the peak time of the population firing, t. The
present study shows that properly timed inhibitory input can
enhance synchrony of a pulse packet ��↓�. This generalizes
the previous observations �1–4� that are interpreted as an

increase in the number of firing neurons �a↑ � in the present
context.

Our numerical simulations coupled with a dynamical sys-
tem analysis reveal a mechanism through which the mem-
brane potential histogram in a neural population gets sharp-
ened by inhibitory input via a nonlinear effect. We refer to
this effect as nonlinear noise reduction. Importantly, this
nonlinear noise reduction occurs with a population of physi-
ologically plausible neuron models but not the LIF model.

Furthermore, our electrophysiological experiments with
rodent brain slice preparations demonstrate that this mecha-
nism works also in real neurons. Finally, we demonstrate
semianalytically with Fokker-Planck �FP� equations how the
mechanism works. Thus, the present study points out the
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FIG. 1. Definition of a pulse packet and simulation setup. �a�
Firing time histogram is parametrized with its total area, a, width, �
and peak time, t �a pulse packet� �9�. �b� Schematic illustration of
the time course of excitatory �top� and inhibitory �bottom� synaptic
currents. �c� Feedforward network of excitatory neurons which are
modeled with Eqs. �1� and �2�. Each neuron in a layer sends input to
all the neurons in the following layer as in �9�. The excitatory neu-
rons in the layer in the question �center� receive phasic inhibitory
input with uniform strength at a specified timing. Open and filled
circles, respectively, represent excitatory and inhibitory neurons.
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importance of using physiological plausible neuron model to
investigate the synchrony phenomenon in neuronal circuits.

II. NUMERICAL SIMULATIONS WITH A
PHYSIOLOGICALLY PLAUSIBLE MODEL

Previous studies on the effects of inhibitory modulation
�2–4� indicated that a hidden dynamical variable plays a piv-
otal role. Therefore, here we use a model proposed by
Izhikevich �25� defined below, which is a minimal extension
of the LIF model with an additional variable accounting for
adaptation,

dv/dt = 0.04v2 + 5v + 140 − u + Isyn + Ibg, �1�

du/dt = a�bv − u� , �2�

where variables, v and u, represent membrane potential and
adaptation. Currents, Isyn and Ibg, respectively, represent syn-
aptic current and background current input. The background
current, Ibg, is stochastic, and its actual value varies across
neurons in a layer. In order to mimic the balanced excitation/
inhibition, membrane potential shot noise �26� is employed
for the background current input. It is modeled as sum of
constant current and Gaussian white noise: Ibg=�bg
+�bgW�t� with �bg=0.37 mV, �bg=1.70 mV, �W�t��=0,
and �W�t�W�t���=��t− t��, which causes spontaneous firing
of neurons in a layer at a rate consistent with in vivo obser-
vations �2–5 Hz�. Variables v and u are reset as v→c, u
→u+d every time v crosses the threshold at 30 mV. As we
explain later, the nonlinear noise reduction is supposed to be
seen in a wide class of neuron models which involve nonlin-
ear dynamics and at least one slow variable. The dynamics of
Izhikevich model neuron satisfies both conditions. In our
simulations, we set a=0.02, b=0.2, c=−65 and d=8, with
which the model exhibits the typical regular spiking activity
observed in real pyramidal neurons �25�. Variable u changes
slowly because of its large time constant, �u=1 /a=50 ms.

Let us consider a feedforward network of excitatory neu-
rons with all-to-all uniform interlayer connections �Fig.
1�c��. To all the neurons in the layer in question, we assume
that phasic inhibitory input is sent at a specified time. We
then ask how a pulse packet propagation is affected by the
modulating inhibitory input arriving 20 ms before the pulse
packet arrival. Synaptic currents are modeled by alpha func-
tion, f�t�= t /�2 exp�−t /��, where � is the time to the peak. We
set �=1.7 ms for both excitatory and inhibitory synapses.

In order to examine how a shape of a pulse packet �a and
� in Fig. 1�a�� changes, we suppose that neurons in the initial
layer �the leftmost one in Fig. 1�c�� fired in a manner whose
population firing is described with a Gaussian-shaped pulse
packet with �=5.0 ms and a=0.8N with N being the total
number of neurons in a layer, and calculated the shape of a
pulse packet generated at the next layer �the central one in
Fig. 1�c��. The initially prepared pulse packet and the gener-
ated pulse packet are respectively called an input packet and
an output packet throughout the paper because they are input
to and output from the central layer in Fig. 1�c�. The arrival
time of input packet is defined by the peak time, t �Fig. 1�b��.

Our inhibitory modulating input is adjusted to cause 5 mV
of hyperpolarization �Fig. 2�c��. This level of hyperpolariza-

tion is within the observed range of inhibitory postsynaptic
potential �IPSP� elicited by a few neurons �27�.

A feedforward network consisting of four hundred excita-
tory neurons per layer �N=400� �Fig. 1�c�� is simulated with
a custom C code with 0.1 ms time steps. In order to obtain a
pulse packet generated at the layer in response to an input
packet, we use the same method as in �9�: we calculate firing
time of each neuron in a layer by solving Eqs. �1� and �2� for
each neuron in a layer. Because of the uncorrelated stochastic
background input to each neuron, firing times vary within a
layer. The resultant spike times are compiled in a histogram
to shape an output packet.

Figures 2�a� and 2�b� clearly show that an output packet is
sharpened by the phasic preceding inhibition. This enhanced
synchrony of the population of neurons is particularly im-
pressive if we note the small size of the IPSP �Fig. 2�c��.
Figure 2�d� shows the histograms of the values of the fast
and slow variables at the initial moment �left�, immediately
after the arrival of the inhibitory input �middle� and at the
arrival of the input packet �right�. From Fig. 2�d�, we notice
that for the v histogram both the central value and its width
mostly recovered their initial values at the arrival time of the
input packet �right�, while for the u histogram both values
remain different from the initial values because of its slow
dynamics.
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FIG. 2. Pulse packet sharpening demonstrated by numerical
simulations in a single layer network. �a� and �b� Raster diagrams
and the corresponding histograms showing neural spikes in re-
sponse to an input packet of a=0.8N and �=5.0 ms, without �a� or
with �b� preceding inhibitory input �N=400�. �c� A sample voltage
trajectory of a neuron in a layer. The small sag at t=−20 ms is
caused by inhibitory input. �d� Histograms of v �top� and u �bottom�
calculated and plotted at the initial moment �t=−25 ms�, immedi-
ately after the inhibitory input is given �t=−15 ms� and at the ar-
rival of the input packet �t=0 ms�.

SHINOZAKI et al. PHYSICAL REVIEW E 81, 011913 �2010�

011913-2



In Eq. �1�, the reduced value of u increases the dc com-
ponent on the right-hand side, which increases the firing
probability �a↑ �. This corresponds to the rebound firing de-
scribed previously �1,2,4�. Meanwhile, the decreased width
of the u histogram reduces the noise on the right hand of Eq.
�1�, thereby enhancing the synchrony of the output packet
��↓�.

In order to confirm the generality of the nonlinear noise
reduction effects among different conditions, we also per-
form numerical simulations with different parameter values
of the Izhikevich model, with a larger network size, and with
the Hodgkin-Huxley model. Figure 3 demonstrates the noise
reduction effect by inhibitory input in all of the conditions,
suggesting the universality of the nonlinear noise reduction.

III. MECHANISM

Here we explain how the nonlinear noise reduction of the
dynamical variables crucially depends on the nonlinear dy-
namics. Since dv /dt depends quadratically on v �Eq. �1��, the
curve for dv /dt versus v is represented as a parabola �see
Fig. 4�a��. Let us assume that input current, Isyn+ Ibg, is not
stochastic and takes a constant value. Depending on the con-
stant value, the parabola shifts in vertical direction �see Eq.
�1��. Such shifts are equivalently illustrated by a moving
horizontal axis �dotted lines� in vertical direction instead of
moving parabola as in Fig. 4�a�. Three points, x, y and z,

indicate the zero crossing of the parabola �meaning dv /dt
=0� for the constants of background current, �bg, being equal
to 0.37, 0.30, or 0.23, and three dotted lines are correspond-
ing equilibrium levels respectively. The background currents
are not actually constant but have stochastic components
which mimic the noisy conditions in the brain, therefore the
membrane potential values are supposed to be distributed as
illustrated in the insets of Fig. 4�a� for the three different
conditions. When the membrane potential is kicked out of
the equilibrium value by the noisy background input, the
membrane potential tends to be attracted back to the equilib-
rium with the speed quadratically depending on v. Graphi-
cally, the speed is proportional to the vertical distance from
the equilibrium which is represented by the dotted line in
Fig. 4�a�, which is large �small� when the tangential slope at
that point is high �low�. This is why the degrees of the scatter
of the membrane potential are different among x, y, and z
depending on their tangential slopes.

Suppose now that membrane potential values are distrib-
uted around x in Fig. 4�a�. Inhibitory input to the neural
population pushes the membrane potential distribution left-
ward and they get centered at y. Accordingly, the membrane
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FIG. 3. Pulse packet sharpening demonstrated in various models
in a single layer network. Shapes of output packets are calculated
and depicted as Figs. 2�a� and 2�b�. Output packets without �a�, �c�,
�e�, and �g� and with �b�, �d�, �f�, and �h� the preceding inhibitory
input. The noise reduction effect of the inhibitory input is obvious,
suggesting the universality of the mechanism. �a� and �b�Izhikevich
model mimicking the fast spiking neurons �a=0.1, b=0.2, c=−65,
and d=2�. �c� and �d� Izhikevich model mimicking the resonator
neurons �a=0.1, b=0.26, c=−60, and d=−1�. �e� and �f� Izhikevich
model mimicking the regular spiking neurons but the number of
neurons in a layer is large, N=40000. �g� and �h� Hodgkin-Huxley
model neurons.
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FIG. 4. Schematic illustrations of membrane potential dynamics.
Each inset depicts the distribution of membrane potential at each
point. A tangential slope at a point is proportional to the speed at
which the scattered values of the membrane potential get back to
the equilibrium point, thereby determines the width of the mem-
brane potential distribution. �a� Dynamics of Izhikevich model. The
parabola represents the curve of dv /dt versus v calculated with Eq.
�1�. Points x, y, and z represent three different levels of hyperpolar-
ization �for details, see the text�. If the membrane potential is ini-
tially near threshold, the fixed point moves from x to y. If it is
initially far from threshold, the fixed point moves, for example,
from y to z. �b� Dynamics of LIF model. The slope of the linear
model as well as the corresponding width of the membrane poten-
tial distribution is constant everywhere and no noise reduction
happens.
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potential distribution is sharpened as shown in the corre-
sponding inset �Fig. 4�a� at y�. On the other hand, if the
membrane potential moves from around y to z, the mem-
brane potential distribution is not expected to be sharpened
largely. This explains that the bottom of the parabola �such as
x in Fig. 4�a�� is the optimal starting position in reducing the
variance of the membrane potential, thereby reducing the
width of the pulse packet.

Two conditions are crucial for the effective noise reduc-
tion explained here. First, neurons should be moderately de-
polarized by the background input to exhibit spontaneous
firing at a low rate as at x. If the neurons are hyperpolarized
and totally silent, the initial membrane potential histogram is
already narrow as at y and no more noise reduction is ex-
pected �see Fig. 4�a� at z�. Second, the membrane potential
dynamics needs to be nonlinear. For the linear model �Fig.
4�b��, the tangential slope is constant everywhere and no
noise reduction occurs.

Note however that this nonlinear noise reduction mani-
fests a visible effect only if the dynamics includes a slow
hidden variable. Since the inhibitory input implies not only
the reduction in the width of the membrane potential histo-
gram but also the significant reduction in the mean value of
it �Fig. 2�d��, middle panel in the top row�. With this large
hyperpolarization, an output packet cannot be generated. It
can be generated only after the hyperpolarization is gone
�Fig. 2�d��, right panel in the top row�, when the noise re-
duction effect is also gone. In contrast, a slow dynamical
variable retains the noise reduction effect longer. As shown
in Fig. 2�d�, the slow variable gets sharpened slowly and
remains sharpened when the fast variable has recovered the
original state. The enduring narrow width of the histogram of
the slow variable sharpens the output packet.

IV. NOISE REDUCTION HAPPENS IN REAL NEURONS

To confirm that the nonlinear noise reduction is biologi-
cally plausible, we perform physiological experiments.
Whole-cell recordings are performed with slice preparations
from the auditory cortex of Wistar rats and a mouse. Detailed
setup of the experiment is given in the Appendix B. We can
determine the shape of an output packet by performing re-
peated injections of the input packet along with the back-
ground current and measuring firing times �9,13�. The re-
peated current injections with 400 different realizations of
background noise shape the output packet as shown in Fig. 5
with raster diagrams and the firing time histograms, without
�Figs. 5�a� and 5�c�� and with �5�b� and 5�d�� the preceding
inhibitory input.

Consistently with our theoretical prediction, an output
packet is sharpened as long as the membrane potential was
near threshold �Figs. 5�a� and 5�b��, where neurons fire spon-
taneously. The width of the output packet decreases as
�� /�=−23�19% �from its original width of
3.29�0.84 ms to 2.12�0.69 ms� due to the preceding in-
hibitory input. In contrast, under the far-threshold condition
�Figs. 5�c� and 5�d��, we observe no reliable change: �� /�
=3�15% �from 0.89�0.59 ms to 0.86�0.51 ms, n=5�.
The sharpening effects quantified with �� /� under far- and

near-threshold conditions are different with the statistical sig-
nificance �paired t-test, p�0.05�.

V. ANALYSIS WITH THE FOKKER-PLANCK EQUATION

In order to understand the nonlinear noise reduction
mechanism semianalytically, we analyze the system with FP
equations which has proven useful in understanding popula-
tion behaviors of neurons �16–19�. The FP equations corre-
sponding to a set of equations, Eqs. �1� and �2�, are two
dimensional so that their numerical integration is computa-
tionally demanding. However, the separation of time scale
between the fast and slow variables enables us to derive a
couple of one-dimensional FP equations of Pv and Pu, which
are probability distributions of v and u, as follows:

�Pv

�t
= −

�

�v
�0.04v2 + 5v + 140 − �u + Isyn + �bg�Pv

+
�u

2 + �bg
2

2

�2Pv

�v2 , �3�

�Pu

�t
= −

�

�u
a�b�v − u�Pu +

�ab�v�2

2

�2Pu

�u2 , �4�

where �bg and �bg represent the mean value and standard
deviation of the environmental background current, respec-
tively. To obtain the FP equation with respect to v from Eq.
�1�, we replace u of Eq. �1� with the mean value, �u, for the
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FIG. 5. Experiments using rodent cortical neurons demonstrate
the nonlinear noise reduction in a single layer network. �a� and �b�
Histograms respectively illustrate output packets obtained in physi-
ological experiments without �a� and with �b� the preceding inhibi-
tory input. The accompanying “raster diagrams” show firing times
of neurons for all the trials with dots. The membrane potential of a
neuron in slice preparation is set near its firing threshold, which
corresponds to point x in Fig. 4�a�, by persistent noisy current in-
jection. Such a current injection elicits spontaneous in vivo-like
firing. The solid curves represent Gaussian fitting of firing histo-
grams. The sharpening of the histogram is clearly seen when the
fitting curve in the test case �lower panel� as a dashed curve. �c� and
�d� The same as �a� and �b� but the membrane potential is set far
from its firing threshold, which corresponds to y in Fig. 4�a�. The
sharpening of the histogram due to the preceding inhibitory input is
not observed. A quantitative comparison of the sharpening effects
between near and far-threshold conditions is given in the text.
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drift term of Eq. �3�. The corresponding diffusion term con-
sists of the standard deviation of v and the stochastic com-
ponent of background current, �u

2+�bg
2 . Coefficients, �u and

�u, are calculated from the probability distribution Pu�u�.
Similarly, to obtain the other FP equation, Eq. �4�, we replace
v in Eq. �2� with the mean value, �v and employ the corre-
sponding diffusion term, �ab�v�2. Note that the dimensional
reduction by a separation of time scales is simpler than more
accurate version studied previously �28–30�.

The boundary condition of Eq. �3� is set to reflect the
resetting of v after firing �16�. The boundary condition for
Eq. �4� does not precisely account for the tricky resetting,
u→u+c, because this resetting rule only affects the second-
ary firing which we can neglect when little or no burst firing
is expected.

To solve Eqs. �3� and �4�, first we determine the equilib-
rium distribution from our numerical simulations of Eqs. �1�
and �2�, then we determine Pv�v� and Pu�u� accordingly,
which we use as the initial conditions at t0 to start integrating
Eqs. �3� and �4� �see Fig. 6�a��. The initial values of, �u and
�u, are calculated from those initial distributions. An effect
of the inhibitory input can be determined by the integration
of Eq. �3� under the assumption that the values of �u and �u
remain unchanged because u is a slow variable. This integra-
tion gives us Pv�v� at t1 �see Fig. 6�a��, which is fitted with
the Gaussian function and the values of �v and �v at that
time are determined. With these updated values �v and �v,
we integrate Eq. �4� to see how the delayed noise reduction
of the slow variable proceeds. This gives us Pu�u� and there-
fore �u and �u at t2, which is immediately before the arrival
of the input. Here, the noise reduction effect that occurred
first on v is transferred to u, which is represented as a reduc-
tion in �u. Finally, we integrate Eq. �3� to calculate how the
output packet is sharpened due to the reduction in �u. Fig-
ures 6�b� and 6�c� show that this approximated FP equations
reproduce the sharpening effect.

VI. DISCUSSION

The present study showed that inhibitory input preceding
excitatory input enhances the synchrony of population firing.
Through the dynamical model analysis, we found that this
synchronization is caused by a nonlinear noise reduction
mechanism originating in the nonlinearity of the membrane
potential dynamics. The nonlinear noise reduction is sup-
posed to be seen in a large class of models with nonlinear
subthreshold dynamics and with at least one hidden slow
variable. In fact, we demonstrated that the noise reduction
happens for the Izhikevich model with different values of
parameters and also for the Hodgkin-Huxley model. The
nonlinear noise reduction mechanism works optimally when
neurons are spontaneously firing. Both the nonlinear mem-
brane dynamics and the spontaneous firing regime are gen-
erally found in biologically plausible neurons in vivo �31,32�.
Although here we considered the noise reduction mechanism
in the subthreshold regime, it would be an interesting future
direction to study the significance of the nonlinear noise re-
duction mechanism in the suprathreshold regime.

Figures 7�a� and 7�b� show our simulations demonstrating
that the slight difference in the width of a pulse packet
caused by inhibitory input only at the initial layer evolves to
the noticeable difference in later layers. Thus, nonlinear
noise reduction can be powerful enough to control the traffic
of the population firing especially in multilayered networks.
In recurrent networks, the importance of the nonlinear dy-
namics has been largely discussed �5,33,34�. The present
study complements such studies in that it focuses on the
feedforward networks, and studies the significance of the
nonlinear membrane potential dynamics there.

A recent monkey experiment showed that the top-down
attention signal is targeted mainly to inhibitory neurons in-
stead of more prevalent excitatory neurons �35�, suggesting
that the attentional signal modulates the network activity via
inhibitory input. This peculiar indirect way of modulation
looks reasonable in the light of the present finding as well as
the previous finding of bidirectional modulation of the firing
probability �4�. Such flexible control could work also in
other excitable media where nonlinear dynamics is as rich as
the neural system.
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FIG. 6. Pulse packet sharpening demonstrates with the coupled
one-dimensional FP equations in a single layer network. �a� Sche-
matic illustration of the one-dimensional FP analysis with adiabatic
approximation. The top row represents the input current to the neu-
ronal population: the modulating inhibitory input followed by an
input packet. Along the time line, v and u histograms at the times
before and after the arrival of the inhibitory input and the times
before and after the arrival of the input packet are shown. The gray
arrows represent the flows of knowledge: for example, the leftmost
up and down arrows indicate that the v histogram is determined
from the u histogram and vice versa. The black arrows indicate the
directions in which the histograms are moving. �b� and �c� Output
packets without �b� and with �c� the preceding inhibition are calcu-
lated as above.
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FIG. 7. Impact of inhibitory input expands progressively in later
layers. �a� Without the inhibitory input, a weak pulse packet disap-
pears around the sixth layer. �b� With the inhibitory input given only
at the second layer, the same initial pulse packet enlarges signifi-
cantly by the sixth layer.
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APPENDIX A: HODGKIN-HUXLEY MODEL

The Hodgkin-Huxley neuron is formulated as follows:

Cm
dV

dt
= − INa − IK − IL + Iext, �A1�

where INa= ḡNaminf
3 h�V−VNa�, IK= ḡKn4�V−VK�, and IL

=gL�V−VL� represent the sodium current, potassium current
and leak current, respectively. Iext �A /cm2 is the external
current input. Gating variables �x=h ,m ,n� follow first-order
dynamics: dx /dt= �xinf−x� /�x. Here, xinf and �x are defined as
xinf=�x / ��x+	x� and �x=
 / ��x+	x�, where 
=0.1 and x
=h ,n ,m: �h=0.07 exp�−�V+65� /20�, 	h=1 / �exp�−0.1�V
+35��+1�, �m=−0.1�V+40� / �exp�−0.1�V+40��−1�, 	m
=4 exp�−�V+65� /18�, �n=−0.01�V+55� / �exp�−0.1�V+55��
−1�, and 	n=0.125 exp�−�V+65� /80�. The membrane ca-
pacitance is set to Cm=1 �F /cm2. The values of the maxi-
mum conductance and reversal potential are set as follows:
ḡNa=120 mS /cm2, ḡK=36 mS /cm2, and gL=0.3 mS /cm2

and VNa=50 mV, VK=−77 mV, and VL=−54.3 mV.

APPENDIX B: METHODS OF PHYSIOLOGICAL
EXPERIMENTS

Surgical, slicing and recording techniques were done as
described previously �13� and followed guidelines estab-
lished by the NYU Animal Welfare Committee. Slices were
made from auditory cortices of young Wistar rats �postnatal
day P18 and P19� and a mouse �P21�. Whole-cell somatic
recordings were made from layer 5 neurons identified under
an infrared video microscopy. During recordings, slices
�300 �m thick� were perfused at room temperature or at
32 °C with artificial cerebrospinal fluid �125 mM NaCl, 2.5
mM KCl, 25 mM glucose, 25 mM NaHCO3, 1.25 mM
NaH2PO4, 2 mM CaCl2, and 1 mM MgCl2�. Pipettes were
filled with 100 mM potassium gluconate, 20mM KCl, 10mM
phosphocreatine, 10mM HEPES, 4mM ATP Mg, and 0.3mM
GTP at pH 7.3. Filled electrode resistances were in the range
of 5–10 M� and recordings were performed under current-
clamp conditions. Voltage and current signals were filtered
and digitized at 10 kHz.

Computer-generated currents �duration 250 ms after re-
moving the initial 100 ms� were delivered to single neuron
every 1.6–2.1 s. An input packet was represented by a
Gaussian-shaped time course of an input current ��
=5.0 ms� convolved with alpha function. The intensity of
the input packet was adjusted to cause at least 80 % of neural
population firing. The inhibitory input preceding an input
packet was also described by the Gaussian-shaped current
��=1.0 ms� convolved with alpha function and set to cause
5 mV of hyperpolarization. The intensity of Gaussian noise
were selected to cause low-frequency spontaneous firing
�2–5 Hz� without any input packet and inhibitory input.

�1� W. K. Luk and K. Aihara, Biol. Cybern. 82, 455 �2000�.
�2� R. Dodla and J. Rinzel, Phys. Rev. E 73, 010903 �2006�.
�3� R. Dodla, G. Svirskis, and J. Rinzel, J. Neurophysiol. 95, 2664

�2006�.
�4� T. Shinozaki, H. Câteau, H. Urakubo, and M. Okada, J. Phys.

Soc. Jpn. 76, 044806 �2007�.
�5� C. V. Vreeswijk, L. F. Abbott, and G. B. Ermentrout, J. Com-

put. Neurosci. 1, 313 �1994�.
�6� M. Abeles, Corticonics: Neural Circuits of the Cerebral Cor-

tex �Cambridge University Press, Cambridge, 1991�.
�7� A. N. Burkitt and G. M. Clark, Neural Comput. 11, 871

�1999�.
�8� M. Herrmann, J. A. Hertz, and A. Prügel-Bennett, Network 6,

403 �1995�.
�9� M. Diesmann, M. O. Gewaltig, and A. Aertsen, Nature �Lon-

don� 402, 529 �1999�.
�10� M. C. W. van Rossum, G. G. Turrigiano, and S. B. Nelson, J.

Neurosci. 22, 1956 �2002�.
�11� N. Masuda and K. Aihara, Phys. Rev. Lett. 88, 248101 �2002�.
�12� Y. Sakai, BioSystems 67, 221 �2002�.
�13� A. D. Reyes, Nat. Neurosci. 6, 593 �2003�.
�14� K. Kitano, H. Câteau, and T. Fukai, NeuroReport 13, 795

�2002�.
�15� K. Kitano, H. Okamoto, and T. Fukai, Biol. Cybern. 88, 387

�2003�.

�16� H. Câteau and T. Fukai, Neural Networks 14, 675 �2001�.
�17� H. Câteau and A. D. Reyes, Phys. Rev. Lett. 96, 058101

�2006�.
�18� K. Hamaguchi, M. Okada, M. Yamana, and K. Aihara, Neural

Comput. 17, 2034 �2005�.
�19� K. Ishibashi, K. Hamaguchi, and M. Okada, J. Phys. Soc. Jpn.

75, 114803 �2006�.
�20� J. M. Beggs and D. Plenz, J. Neurosci. 23, 11167 �2003�.
�21� Y. Ikegaya, G. Aaron, R. Cossart, D. Aronov, I. Lampl, D.

Ferster, and R. Yuste, Science 304, 559 �2004�.
�22� J.-N. Teramae and T. Fukai, J. Comput. Neurosci. 22, 301

�2007�.
�23� J.-N. Teramae and T. Fukai, Biol. Cybern. 99, 105 �2008�.
�24� B. Doiron, J. Rinzel, and A. Reyes, Phys. Rev. E 74, 030903

�2006�.
�25� E. M. Izhikevich, IEEE Trans. Neural Netw. 14, 1569 �2003�.
�26� C. van Vreeswijk and H. Sompolinsky, Science 274, 1724

�1996�.
�27� C. Holmgren, T. Harkany, B. Svennenfors, and Y. Zilberter, J.

Physiol. �London� 551, 139 �2003�.
�28� D. Cai, L. Tao, M. Shelley, and D. W. McLaughlin, Proc. Natl.

Acad. Sci. U.S.A. 101, 7757 �2004�.
�29� D. Cai, L. Tao, A. V. Rangan, and D. W. McLaughlin, Com-

mun. Math. Sci. 4, 97 �2006�.
�30� C. Ly and D. Tranchina, Neural Comput. 19, 2032 �2007�.

SHINOZAKI et al. PHYSICAL REVIEW E 81, 011913 �2010�

011913-6



�31� D. Paré, E. Shink, H. Gaudreau, A. Destexhe, and E. J. Lang,
J. Neurophysiol. 79, 1450 �1998�.

�32� T. Hromádka, M. R. Deweese, and A. M. Zador, PLoS Biol. 6,
e16 �2008�.

�33� H. Câteau, K. Kitano, and T. Fukai, Phys. Rev. E 77, 051909

�2008�.
�34� T. Aoki and T. Aoyagi, Phys. Rev. Lett. 102, 034101 �2009�.
�35� J. F. Mitchell, K. A. Sundberg, and J. H. Reynolds, Neuron 55,

131 �2007�.

FLEXIBLE TRAFFIC CONTROL OF THE SYNFIRE-MODE… PHYSICAL REVIEW E 81, 011913 �2010�

011913-7


